Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Acta Neurol Taiwan ; 32(2): 79-81, 2023 Jun 30.
Article in English | MEDLINE | ID: covidwho-2326721

ABSTRACT

Vaccine-related side effects are common. Usually, pain, edema, redness and tenderness may be seen at the injection site. Symptoms such as fever, fatigue, myalgia may occur. The coronavirus 2019 disease (Covid-19) has affected many people around the world. Although the vaccines that have been used play an active role in the fight against the pandemic, adverse events still continue to be reported. We present a 21-year-old patient who was diagnosed as having myositis after receiving covid vaccine with complaints of pain in her left arm two days after the 2nd dose of BNT162b2 mRNA Covid-19 vaccine, followed by inability to stand up from sitting and squatting and difficulty in going up and down stairs. Keywords: vaccine, myositis, creatine kinase, IVIG.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myositis , Adult , Female , Humans , Young Adult , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Myalgia/etiology , Myositis/etiology
2.
Am J Case Rep ; 23: e937215, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2242399

ABSTRACT

BACKGROUND Peripherally inserted central catheters (PICCs) are commonly used by clinicians in daily practice as a safe and reliable alternative to central venous catheters. While there are advantages to the use of PICCs, such as a low insertion-related complication rate and cost-effectiveness, using PICCs may expose patients to life-threatening severe complications such as a central line-associated bloodstream infection and deep venous thrombosis (DVT). There have been no reports of infectious myositis associated with PICC insertion. CASE REPORT We report a case of infectious myositis related to PICC insertion complicated by brachial DVT in a 43-year-old immunocompromised patient with myelodysplastic syndrome. Despite the administration of broad-spectrum antibiotics, the patient's condition did not improve. He developed septic shock and required emergency excision of the infected and necrotic muscles. Although the pathogen responsible for the infection was unknown, infectious myositis and myonecrosis were observed intraoperatively. Furthermore, histopathological examination revealed evidence of infectious myositis in the biceps brachii and brachial muscles. The septic shock resolved with treatment and the patient survived with residual elbow joint dysfunction. CONCLUSIONS We present a case of infectious myositis related to PICC insertion. We believe that urgent resection of infected and necrotic tissues, rather than broad-spectrum antimicrobial therapy alone, was essential to save the patient's life.


Subject(s)
Catheterization, Central Venous , Catheterization, Peripheral , Central Venous Catheters , Myositis , Shock, Septic , Adult , Anti-Bacterial Agents , Catheterization, Central Venous/adverse effects , Catheterization, Peripheral/adverse effects , Central Venous Catheters/adverse effects , Humans , Male , Myositis/etiology , Myositis/therapy , Postoperative Complications/etiology , Risk Factors , Shock, Septic/etiology
3.
Front Public Health ; 10: 1007637, 2022.
Article in English | MEDLINE | ID: covidwho-2109884

ABSTRACT

Introduction: Reports of unexpected side effects have accompanied the vaccination of larger proportions of the population against coronavirus disease 2019 (COVID-19), including a few cases of inflammatory myopathy (IM). In a bid to improve understanding of the clinical course of vaccine complications, a systematic review of reported cases of IM following COVID-19 vaccination has been conducted. Methods: The PRISMA guideline 2020 was followed. Two independent investigators systematically searched PubMed and Embase to identify relevant studies published up to July 2022, using the following keywords: COVID-19 Vaccine, inflammatory myositis. The Joanna Briggs Institute critical appraisal tools were used for the risk of bias. Results: A total of 24 articles presenting clinical features of 37 patients with IM following COVID-19 vaccine were identified. Female patients composed 59.5% of cases and 82.4% had been vaccinated with BNT162b2 or ChAdOx1. Onset of symptoms occurred within 2 weeks of the first or second vaccine dose in 29 (85.3%) patients and included muscular weakness in 54.1% and skin rash in 71.4% of patients. Myositis specific autoantibodies (MSAs) and myositis associated autoantibodies (MAAs) were reported in 28 patients. Specific clinical subtypes of myositis, reported in 27 patients, included 22 (81.5%) cases of dermatomyositis (DM) and 3 (11.1%) cases of immune-mediated necrotizing myopathy (IMNM). Following treatment, 32 (86.5%) patients showed improvement on follow-up. Conclusion: COVID-19 vaccine may induce various clinical myositis subtypes and related antibodies. Muscular weakness was the most common presenting symptom. Clinicians should be aware of this unexpected adverse event following COVID-19 vaccination and arrange for appropriate management. Systematic review registration: INPLASY https://inplasy.com/inplasy-2022-9-0084/ [INPLASY202290084].


Subject(s)
COVID-19 , Myositis , Female , Humans , Autoantibodies , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Muscle Weakness , Myositis/etiology , Vaccination
6.
Acta Neurol Belg ; 122(4): 1043-1047, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1370412

ABSTRACT

AIM: To present the etiological evaluation results of our acute benign childhood myositis cases. MATERIALS AND METHODS: Children, who were referred to pediatric neurology outpatient clinic in Maternity and Children's Hospital, with difficulty in walking and high creatinine kinase levels were evaluated. Viral and bacterial serological evaluation of children were performed by real-time polymerase chain reaction method. RESULTS: Twenty-five children (21 M,4 F) included in the study. The most common complaints were walking difficulty and tenderness, pain on the gastrocnemius muscles. Their creatine kinase levels were between 216 and 8770 IU. Twenty-two children were hospitalized. Analgesic, intravenous fluid, antibiotic and/or antiviral drugs were given. The most common etiologies were influenza A and B. One children was diagnosed as suspected COVID-19 by the symptoms and the findings in thorax computerized tomography but the SARS-CoV-2 PCR and antibody tests were negative. CONCLUSION: School-aged children admitted to hospital with walking difficulty generally after an upper respiratory tract infection with a moderate creatine kinase elevation should remind at first acute benign myositis. Resolution of the complaints in a short time and normalisation of the biochemical markers will prevent unnecessary tests. Endemic and pandemic infections may cause this entity as well.


Subject(s)
Influenza, Human , Myositis , COVID-19 , Child , Creatine Kinase , Humans , Influenza, Human/complications , Influenza, Human/diagnosis , Myositis/diagnosis , Myositis/etiology
7.
Curr Rheumatol Rep ; 23(8): 63, 2021 07 03.
Article in English | MEDLINE | ID: covidwho-1293439

ABSTRACT

PURPOSE: Myositis as a rare manifestation of COVID-19 is only recently being reported. This review examines the current literature on COVID-19-induced myositis focusing on etiopathogenesis, clinical presentations, diagnostic practices, and therapeutic challenges with immunosuppression, and the difficulties experienced by rheumatologists in established myositis in the COVID-19 era. RECENT FINDINGS: COVID-19 is associated with a viral myositis attributable to direct myocyte invasion or induction of autoimmunity. COVID-19-induced myositis may be varied in presentation, from typical dermatomyositis to rhabdomyolysis, and a paraspinal affliction with back pain. It may or may not present with acute exponential elevations of enzyme markers such as creatine kinase (CK). Virus-mediated muscle inflammation is attributed to ACE2 (angiotensin-converting enzyme) receptor-mediated direct entry and affliction of muscle fibers, leading on to innate and adaptive immune activation. A greater recognition of the stark similarity between anti-MDA5-positive myositis with COVID-19 has thrown researchers into the alley of exploration - finding common etiopathogenic basis as well as therapeutic strategies. For patients with established myositis, chronic care was disrupted during the pandemic with several logistic challenges and treatment dilemmas leading to high flare rates. Teleconsultation bridged the gap while ushering in an era of patient-led care with the digital transition to tools of remote disease assessment. COVID-19 has brought along greater insight into unique manifestations of COVID-19-related myositis, ranging from direct virus-induced muscle disease to triggered autoimmunity and other etiopathogenic links to explore. A remarkable shift in the means of delivering chronic care has led patients and caregivers worldwide to embrace a virtual shift with teleconsultation and opened doorways to a new era of patient-led care.


Subject(s)
COVID-19/physiopathology , Myositis/physiopathology , Rhabdomyolysis/physiopathology , Adaptive Immunity/immunology , Angiotensin-Converting Enzyme 2/metabolism , Autoantibodies/immunology , Back Pain/etiology , COVID-19/complications , COVID-19/immunology , COVID-19/metabolism , Creatine Kinase/metabolism , Dermatomyositis/etiology , Dermatomyositis/immunology , Dermatomyositis/metabolism , Dermatomyositis/physiopathology , Humans , Immunity, Innate/immunology , Interferon-Induced Helicase, IFIH1/immunology , Myasthenia Gravis/etiology , Myasthenia Gravis/immunology , Myasthenia Gravis/metabolism , Myasthenia Gravis/physiopathology , Myositis/etiology , Myositis/immunology , Myositis/metabolism , Paraspinal Muscles/physiopathology , Receptors, Coronavirus/metabolism , Rhabdomyolysis/etiology , Rhabdomyolysis/immunology , Rhabdomyolysis/metabolism , SARS-CoV-2
8.
Eur Rev Med Pharmacol Sci ; 24(22): 11960-11963, 2020 11.
Article in English | MEDLINE | ID: covidwho-962031

ABSTRACT

Though the exact etiology of autoimmune diseases still remains not completely known, there are various factors which are known to contribute to be trigger of autoimmune diseases. Viral infection is known to be among the other. It is known as the infection from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) can be an autoimmune trigger, so, we suppose that SARS-Coronavirus (SARS-CoV-2) could be as well. Several authors have highlighted the temporal consequence between SARS-CoV-2 and autoimmune diseases. In this case report we described a patient admitted for COVID-19 pneumonia with completely negative autoimmunity at admission who developed major pulmonary interstitial disease. During the hospitalization the weaning difficulties from oxygen led us to the repetition of autoimmunity pattern which became positive (both during hospitalization then after two months from dismission) with marked positivity for specific antibodies for myositis even after the patient's infectious healing. In the follow-up, the patient continued to have asthenia and muscle weakness despite steroid therapy. She is still in follow-up and will be further evaluated over time. Can we therefore think that in this case the development of autoimmunity can persist beyond the infectious phase and determine over time the development of a real autoimmune myositis?


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/immunology , COVID-19/immunology , Lung Diseases, Interstitial/immunology , Muscle Weakness/immunology , Myositis/immunology , Aged , Antibodies, Antineutrophil Cytoplasmic/immunology , Antibodies, Antinuclear/immunology , Antigens, Nuclear/immunology , Asthenia/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/etiology , Autoimmune Diseases/physiopathology , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Female , Humans , Ku Autoantigen/immunology , Mi-2 Nucleosome Remodeling and Deacetylase Complex/immunology , Myositis/drug therapy , Myositis/etiology , Myositis/physiopathology
9.
Neurol Neuroimmunol Neuroinflamm ; 7(5)2020 09.
Article in English | MEDLINE | ID: covidwho-810332

ABSTRACT

OBJECTIVE: To present the COVID-19-associated GBS, the prototypic viral-triggered autoimmune disease, in the context of other emerging COVID-19-triggered autoimmunities, and discuss potential concerns with ongoing neuroimmunotherapies. METHODS: Eleven GBS cases in four key COVID-19 hotspots are discussed regarding presenting symptoms, response to therapies and cross-reactivity of COVID spike proteins with nerve glycolipids. Emerging cases of COVID-19-triggered autoimmune necrotizing myositis (NAM) and encephalopathies are also reviewed in the context of viral invasion, autoimmunity and ongoing immunotherapies. RESULTS: Collective data indicate that in this pandemic any patient presenting with an acute paralytic disease-like GBS, encephalomyelitis or myositis-even without systemic symptoms, may represent the first manifestation of COVID-19. Anosmia, ageusia, other cranial neuropathies and lymphocytopenia are red flags enhancing early diagnostic suspicion. In Miller-Fisher Syndrome, ganglioside antibodies against GD1b, instead of QG1b, were found; because the COVID-19 spike protein also binds to sialic acid-containing glycoproteins for cell-entry and anti-GD1b antibodies typically cause ataxic neuropathy, cross-reactivity between COVID-19-bearing gangliosides and peripheral nerve glycolipids was addressed. Elevated Creatine Kinase (>10,000) is reported in 10% of COVID-19-infected patients; two such patients presented with painful muscle weakness responding to IVIg indicating that COVID-19-triggered NAM is an overlooked entity. Cases of acute necrotizing brainstem encephalitis, cranial neuropathies with leptomeningeal enhancement, and tumefactive postgadolinium-enhanced demyelinating lesions are now emerging with the need to explore neuroinvasion and autoimmunity. Concerns for modifications-if any-of chronic immunotherapies with steroids, mycophenolate, azathioprine, IVIg, and anti-B-cell agents were addressed; the role of complement in innate immunity to viral responses and anti-complement therapeutics (i.e. eculizumab) were reviewed. CONCLUSIONS: Emerging data indicate that COVID-19 can trigger not only GBS but other autoimmune neurological diseases necessitating vigilance for early diagnosis and therapy initiation. Although COVID-19 infection, like most other viruses, can potentially worsen patients with pre-existing autoimmunity, there is no evidence that patients with autoimmune neurological diseases stable on common immunotherapies are facing increased risks of infection.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Guillain-Barre Syndrome/diagnosis , Guillain-Barre Syndrome/etiology , Myositis/diagnosis , Myositis/etiology , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Aged , Aged, 80 and over , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/etiology , Autoimmune Diseases of the Nervous System/immunology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Female , Guillain-Barre Syndrome/immunology , Humans , Male , Myositis/immunology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
10.
AJNR Am J Neuroradiol ; 41(10): 1949-1952, 2020 10.
Article in English | MEDLINE | ID: covidwho-696241

ABSTRACT

Myalgia is a previously reported symptom in patients with COVID-19 infection; however, the presence of paraspinal myositis has not been previously reported. We report MR imaging findings of the spine obtained in a cohort of 9 patients with COVID-19 infection who presented to our hospital between March 3, 2020 and May 6, 2020. We found that 7 of 9 COVID-19 patients (78%) who underwent MR imaging of the spine had MR imaging evidence of paraspinal myositis, characterized by intramuscular edema and/or enhancement. Five of these 7 patients had a prolonged hospital course (greater than 25 days). Our knowledge of the imaging manifestations of COVID-19 infection is expanding. It is important for clinicians>a to be aware of the relatively high frequency of paraspinal myositis in this small cohort of patients with COVID-19 infection.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Myositis/diagnostic imaging , Myositis/etiology , Pneumonia, Viral/complications , Spine/diagnostic imaging , Adult , Aged , Aged, 80 and over , COVID-19 , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL